高二数学学习:高二数学不等式[04-24 22:25:47] 来源:http://www.guaimaomi.com 高二数学知识点 阅读:9422次
概要:图象),直接比较大小。④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小二、均值不等式:两个数的算术平均数不小于它们的几何平均数。基本应用:①放缩,变形;②求函数最值:注意:①一正二定三相等;②积定和最小,和定积最大。常用的方法为:拆、凑、平方;三、绝对值不等式:注意:上述等号“=”成立的条件;四、常用的基本不等式:五、证明不等式常用方法:(1)比较法:作差比较:作差比较的步骤:⑴作差:对要比较大小的两个数(或式)作差。⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。⑶判断差的符号:结合变形的结果及题设条件判断差的符号。注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。(2)综合法:由因导果。(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……(4)反证法:正难则反。(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:⑴添加或舍去一些项,⑵将分子或分母放大(或缩小)⑶利用基本不等式,(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;以上就是“高二数学学习:高二数学不等式”的所有内容,希望对大家有所帮助!相关推荐: 高二数学学习:高二数学不等式,http://www.guaimaomi.comwww.guaimaomi.com为大家提供“高二数学学习:高二数学不等式”一文,供大家参考使用: 高二数学学习:高二数学不等式 九、不等式 一、不等式的基本性质: 注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。 (2)注意课本上的几个性质,另外需要特别注意: ①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。 ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。 ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。 ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三相等;②积定和最小,和定积最大。 常用的方法为:拆、凑、平方; 三、绝对值不等式: 注意:上述等号“=”成立的条件; 四、常用的基本不等式: 五、证明不等式常用方法: (1)比较法:作差比较: 作差比较的步骤: ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。 (3)分析法:执果索因。基本步骤:要证……只需证……,只需证…… (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项, ⑵将分子或分母放大(或缩小) ⑶利用基本不等式, (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。 (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 以上就是“高二数学学习:高二数学不等式”的所有内容,希望对大家有所帮助! 相关推荐: www.guaimaomi.com
标签:高二数学知识点,高二数学知识点总结,高中数学学习方法总结,高中学习网 - 高二学习辅导 - 高二数学辅导 - 高二数学知识点
关键词:
|
最新《高二数学知识点》
热门《高二数学知识点》
|