中小学教育 | 课件试题教案 | 作文指导 | 范文写作 | 网站地图

欢迎来到 - 乖猫咪学习网 - http://www.guaimaomi.com !

教学反思 班主任 家长专区 教育范文
首 页
您当前所在位置: 乖猫咪学习网中小学教学高中学习网高三学习辅导高三数学复习高三数学知识点2017高考数学一轮复习:不等式典型题 -- 正文

2017高考数学一轮复习:不等式典型题

[05-23 10:35:54]   来源:http://www.guaimaomi.com  高三数学知识点   阅读:9299

概要:,求ac+bd的最大值。【错解】 ac+bd+==。所以ac+bd的最大值为。【评析及正解】若ac+bd的最大值为 ,则必须a=c且b=d同时成立,但这是不可能的。所以不是ac+bd的最大值。正确的解法是2(ac+bd)+===4,ac+bd2,当且仅当2a=c=且 2b=d=时,等号成立。2.解不等式(x+2)2(x+3)(x-2)0.【错解】因为(x+2)20所以原不等式可化为(x+3)(x-2)0,因此原不等式的解集为{x|x-3或x2}【评析及正解】错因在于忽视了“”的含义,机械地将等式的运算性质套用到不等式运算中。正确的解法是原不等式可化为:(x+2)2(x+3)(x-2)=0或(x+2)2(x+3)(x-2)>;0解得:x=-3或x=-2 或x=2;解得:x2.所以原不等式的解集为{x|x-3或x2或x=-2}。3.已知关于x的不等式【错解】由3M且5M,得解得1a因此实数a的取值范围是[1,)(9,25)。【评析及正解】如何理解5M,5M是指5不满足不等式正确的解法是 因为5M,则5不满足不等式若5M,则25,因此1a25时,5M.又3M,则9.于是实数a的取值范围满足a9且1a25,即[1,)(9,25]。总结:以上就是“最新高考数学一轮复习:不等式典型题”的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩!相关精彩内容推荐: www.guaimaomi.com

2017高考数学一轮复习:不等式典型题,http://www.guaimaomi.com

摘要:高考复习就像是一场持久战,我们不仅要制定好大的战略,针对每一场战役更要制定好相应的战术。最新高考历史如何复习?下面是“最新高考数学一轮复习:不等式典型题”欢迎大家点击参考!

不等式部分

1.已知a2+b2=1,c2+d2=4,求ac+bd的最大值。

【错解】 ac+bd+==。

所以ac+bd的最大值为。

【评析及正解】若ac+bd的最大值为 ,则必须a=c且b=d同时成立,但这是不可能的。所以不是ac+bd的最大值。

正确的解法是

2(ac+bd)+===4,ac+bd2,当且仅当2a=c=且 2b=d=时,等号成立。

2.解不等式(x+2)2(x+3)(x-2)0.

【错解】因为(x+2)20

所以原不等式可化为(x+3)(x-2)0,

因此原不等式的解集为{x|x-3或x2}

【评析及正解】错因在于忽视了“”的含义,机械地将等式的运算性质套用到不等式运算中。

正确的解法是原不等式可化为:

(x+2)2(x+3)(x-2)=0

或(x+2)2(x+3)(x-2)>;0

解得:x=-3或x=-2 或x=2;

解得:x2.

所以原不等式的解集为{x|x-3或x2或x=-2}。

3.已知关于x的不等式

【错解】由3M且5M,得

解得1a

因此实数a的取值范围是[1,)(9,25)。

【评析及正解】如何理解5M,5M是指5不满足不等式

正确的解法是 因为5M,

则5不满足不等式

若5M,则25,因此1a25时,5M.

又3M,则9.

于是实数a的取值范围满足a9且1a25,即[1,)(9,25]。

总结:以上就是“最新高考数学一轮复习:不等式典型题”的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩!

相关精彩内容推荐:

www.guaimaomi.com
标签:高三数学知识点高三数学知识点总结,高三数学复习资料高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学知识点
关键词:
《2017高考数学一轮复习:不等式典型题》相关文章
联系我们 | 网站地图 | 中小学教育 | 课件试题教案 | 作文指导 | 范文写作
Copyright 乖猫咪学习网 All Right Reserved.
1 2 3 4