初二数学知识点之整式乘除与因式分解讲解[10-18 00:16:19] 来源:http://www.guaimaomi.com 初二数学知识点 阅读:9712次
概要:母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式. www.guaimaomi.com 二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公 初二数学知识点之整式乘除与因式分解讲解,http://www.guaimaomi.com鉴于数学知识点的重要性,小编为您提供了这篇初二数学知识点之整式乘除与因式分解讲解,希望对同学们的数学有所帮助。 单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 多项式除以单项式的法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 2、乘法公式: ①平方差公式:(a+b)(a-b)=a2-b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. ②完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍. 3、因式分解: 因式分解的定义. 把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解. 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; (2)因式分解必须是恒等变形; (3)因式分解必须分解到每个因式都不能分解为止. 弄清因式分解与整式乘法的内在的关系. 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式. www.guaimaomi.com
二、熟练掌握因式分解的常用方法. 1、提公因式法 (1)掌握提公因式法的概念; (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数; (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项. (4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式: ①平方差公式: a2-b2= (a+b)(a-b) ②完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这篇初二数学知识点之整式乘除与因式分解讲解是精品小编精心为同学们准备的,祝大家学习愉快! 初二数学知识点:关于圆的定理 数学知识点:函数
标签:初二数学知识点,初二数学知识点总结大全,初中数学学习方法总结,初中学习网 - 初二学习辅导 - 初二数学辅导资料 - 初二数学知识点
关键词:
|
最新《初二数学知识点》
热门《初二数学知识点》
|