有关二次函数的初三数学知识点归纳总结[10-18 00:15:41] 来源:http://www.guaimaomi.com 初三数学知识点 阅读:9479次
概要:=ax2 (a≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式---待定系数法.5.二次函数的顶点式: y=a(x-h)2+k (a≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k.6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.7. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下:k值增大 <=> 图象向上平移;k值减小 <=> 图象向下平移;(x-h)值增大 <=> 图象向左平移;(x-h)值减小 <=> 图象向右平移.8. 二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式:9. 二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:(1) a>0 <=> 抛物线开口向上; a<0 <=> 抛物线开口向下; 有关二次函数的初三数学知识点归纳总结,http://www.guaimaomi.com数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,为此小编为大家整理了有关二次函数的初三数学知识点归纳总结,希望能够帮助到大家。 1. 二次函数的一般形式:y=ax2+bx+c.(a≠0) 2. 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点. 3. y=ax2 (a≠0)的特性:当y=ax2+bx+c (a≠0)中的b=0且c=0时二次函数为y=ax2 (a≠0); 这个二次函数是一个特殊的二次函数,有下列特性: (1)图象关于y轴对称;(2)顶点(0,0); 4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式-------待定系数法. 5.二次函数的顶点式: y=a(x-h)2+k (a≠0); 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k. 6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式. 7. 二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下: k值增大 <=> 图象向上平移; k值减小 <=> 图象向下平移; (x-h)值增大 <=> 图象向左平移; (x-h)值减小 <=> 图象向右平移. 8. 二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式: 9. 二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系: (1) a>0 <=> 抛物线开口向上; a<0 <=> 抛物线开口向下; (2) c>0 <=> 抛物线从原点上方通过; c=0 <=> 抛物线从原点通过; c<0 <=> 抛物线从原点下方通过; (3) a, b异号 <=> 对称轴在y轴的右侧; a, b同号 <=> 对称轴在y轴的左侧; b=0 <=> 对称轴是y轴; (4) b2-4ac>0 <=> 抛物线与x轴有两个交点; b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切); b2-4ac<0 <=> 抛物线与x轴无交点. 10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上. 以上内容由www.guaimaomi.com独家专供,希望这篇有关二次函数的初三数学知识点归纳总结能够帮助到大家。 初三数学知识点之圆的知识点整理 人教版九年级数学上册知识点二次根式知识讲解 www.guaimaomi.com
标签:初三数学知识点,初三数学知识点总结,初三数学学习方法总结,初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学知识点
关键词:
|
最新《初三数学知识点》
热门《初三数学知识点》
|