中小学教育 | 课件试题教案 | 作文指导 | 范文写作 | 网站地图

欢迎来到 - 乖猫咪学习网 - http://www.guaimaomi.com !

教学反思 班主任 家长专区 教育范文
首 页
您当前所在位置: 乖猫咪学习网中小学教学高中学习网高一学习辅导高一数学辅导资料高一数学教案高一数学教案:函数的概念和图象教案 -- 正文

高一数学教案:函数的概念和图象教案

[04-24 22:24:31]   来源:http://www.guaimaomi.com  高一数学教案   阅读:9450

概要:题导入[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:问题一:y=1(x∈R)是函数吗?问题二:y=x与y=x2x 是同一个函数吗?(学生思考,很难回答)[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).Ⅱ.讲授新课[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.在(1)中,对应关系是“乘2”,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.在(2)中,对应关系是“求平方”,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.在(3)中,对应关系是“求倒数”,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.请同学们观察3个对应,它们分别是怎样形式的对应呢?[生]一对一、二对一、一对一.[师]这3个对应的共同特点是什么呢?[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应

高一数学教案:函数的概念和图象教案,http://www.guaimaomi.com

【摘要】欢迎来到www.guaimaomi.com高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:函数的概念和图象教案”希望能为您的提供到帮助。

本文题目:高一数学教案:函数的概念和图象教案

第1课时 函数的概念和图象

银河学校 张西元

教学目标:

使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

教学重点:

函数的概念,函数定义域的求法.

教学难点:

函数概念的理解.

教学过程:

Ⅰ.课题导入

[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

问题一:y=1(x∈R)是函数吗?

问题二:y=x与y=x2x 是同一个函数吗?

(学生思考,很难回答)

[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

Ⅱ.讲授新课

[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.

在(1)中,对应关系是“乘2”,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.

在(2)中,对应关系是“求平方”,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.

在(3)中,对应关系是“求倒数”,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.

请同学们观察3个对应,它们分别是怎样形式的对应呢?

[生]一对一、二对一、一对一.

[师]这3个对应的共同特点是什么呢?

[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.

[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.

现在我们把函数的概念进一步叙述如下:(板书)

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰A→B为从集合A到集合B的一个函数.

记作:y=f(x),x∈A

其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),x∈A}叫函数的值域.

一次函数f(x)=ax+b(a≠0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a≠0)和它对应.

反比例函数f(x)=kx (k≠0)的定义域是A={x|x≠0},值域是B={f(x)|f(x)≠0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k≠0)和它对应.

二次函数f(x)=ax2+bx+c(a≠0)的定义域是R,值域是当a>0时B={f(x)|f(x)≥4ac-b24a };当a<0时,B={f(x)|f(x)≤4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a≠0)对应.

函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

y=1(x∈R)是函数,因为对于实数集R中的任何一个数x,按照对应关系“函数值是1”,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.

Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x≠0}. 所以y=x与y=x2x 不是同一个函数.

[师]理解函数的定义,我们应该注意些什么呢?

www.guaimaomi.com

(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

注意:①函数是非空数集到非空数集上的一种对应.

②符号“f:A→B”表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

③集合A中数的任意性,集合B中数的惟一性.

④f表示对应关系,在不同的函数中,f的具体含义不一样.

⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

Ⅲ.例题分析

[例1]求下列函数的定义域.

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

解:(1)x-2≠0,即x≠2时,1x-2 有意义

∴这个函数的定义域是{x|x≠2}

(2)3x+2≥0,即x≥-23 时3x+2 有意义

∴函数y=3x+2 的定义域是[-23 ,+∞)

(3) x+1≥02-x≠0 x≥-1x≠2

∴这个函数的定义域是{x|x≥-1}∩{x|x≠2}=[-1,2)∪(2,+∞).

注意:函数的定义域可用三种方法表示:不等式、集合、区间.

从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

(1)如果f(x)是整式,那么函数的定义域是实数集R;

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

[1] [2]  下一页


标签:高一数学教案高一数学教案模板,高中数学学习方法总结高中学习网 - 高一学习辅导 - 高一数学辅导资料 - 高一数学教案
关键词:
《高一数学教案:函数的概念和图象教案》相关文章
联系我们 | 网站地图 | 中小学教育 | 课件试题教案 | 作文指导 | 范文写作
Copyright 乖猫咪学习网 All Right Reserved.
1 2 3 4