2017年中考数学试题圆考点归类[05-23 10:36:59] 来源:http://www.guaimaomi.com 初三数学试卷 阅读:9645次
概要: B、外切 C、外离 D、内含【答案】B。【考点】两圆的位置关系。【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。故选B。3,(内蒙古包头3分)已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于A、30° B、60° C、45° D、50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。【分析】连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠CAP=∠ACO。∵PC为⊙O的切线,∴OC⊥PC。∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。故选C。4.(内蒙古呼和浩特3分)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为A. 2017年中考数学试题圆考点归类,http://www.guaimaomi.com以下是www.guaimaomi.com为您推荐的最新一年中考数学试题圆考点归类,希望本篇文章对您学习有所帮助。 最新一年中考数学试题圆考点归类 一、选择题 1. (天津3分)已知⊙ 与⊙ 的半径分别为3 cm和4 cm,若 =7 cm,则⊙ 与⊙ 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切 【答案】D。 【考点】圆与圆位置关系的判定。 【分析】两圆半径之和3+4=7,等于两圆圆心距 =7,根据圆与圆位置关系的判定可知两圆外切。 2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 A、相交 B、外切 C、外离 D、内含 【答案】B。 【考点】两圆的位置关系。 【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。 ∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。 ∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。故选B。 3,(内蒙古包头3分)已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于 A、30° B、60° C、45° D、50° 【答案】 【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。 【分析】连接OC, ∵OC=OA,,PD平分∠APC, ∴∠CPD=∠DPA,∠CAP=∠ACO。 ∵PC为⊙O的切线,∴OC⊥PC。 ∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。故选C。 4.(内蒙古呼和浩特3分)如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为 A. B. C. D. 【答案】B。 【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。 【分析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF。 根据直径所对圆周角是直角的性质,得∠FDB=90°; 根据圆的轴对称性和DC∥AB,得四边形FBCD是等腰梯形。 ∴DF=CB=1,BF=2+2=4。∴BD= 。故选B。 5.(内蒙古呼伦贝尔3分)⊙O1的半径是 ,⊙2的半径是 ,圆心距是 ,则两圆的位置关系为 A. 相交 B. 外切 C.外离 D. 内切 【答案】A。 【考点】两圆的位置关系。 【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。由于5-2<4<5+2,所以两圆相交。故选A。 6.(内蒙古呼伦贝尔3分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为. A. 5 B. 4 C. .3 D. 2 【答案】C。 【考点】垂直线段的性质,弦径定理,勾股定理。 【分析】由直线外一点到一条直线的连线中垂直线段最短的性质,知线段OM长的最小值为点O到弦AB的垂直线段。如图,过点O作OM⊥AB于M,连接OA。 根据弦径定理,得AM=BM=4,在Rt△AOM中,由AM=4, OA=5,根据勾股定理得OM=3,即线段OM长的最小值为3。故选C。 7.(内蒙古呼伦贝尔3分)如图,AB是⊙O的直径,点C、D在⊙O上 ,∠BOD=110°,AC∥OD,则∠AOC的度数 A. 70° B. 60° C. 50° D. 40° 【答案】D。 【考点】等腰三角形的性质,三角形内角和定理,平角定义,平行的性质。 【分析】由AB是⊙O的直径,点C、D在⊙O上,知OA=OC,根据等腰三角形等边对等角的性质和三角形内角和定理,得∠AOC=1800-2∠OAC。 由AC∥OD,根据两直线平行,内错角相等的性质,得∠OAC=∠AOD。 由AB是⊙O的直径,∠BOD=110°,根据平角的定义,得∠AOD=1800-∠BOD=70°。 ∴∠AOC=1800-2×70°=400。故选D。 8.(内蒙古乌兰察布3分)如图, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD ,如果∠BOC = 70 ,那么∠A的度数为 A 70 B. 35 C. 30 D . 20 【答案】B。 【考点】弦径定理,圆周角定理。 【分析】如图,连接OD,AC。由∠BOC = 70 , 根据弦径定理,得∠DOC = 140 ; 根据同弧所对圆周角是圆心角一半的性质,得∠DAC = 70 。 从而再根据弦径定理,得∠A的度数为35 。故选B。 17.填空题 1.(天津3分)如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于 ▲ 。 【答案】5。 【考点】解直角三角形,直径所对圆周角的性质。 【分析】∵在Rt△ABO中, , ∴AD=2AO= 。 连接CD,则∠ACD=90°。 ∵在Rt△ADC中, , ∴BC=AC-AB=15-10=5。 2.(河北省3分)如图,点0为优弧 所在圆的圆心,∠AOC=108°,点D在AB延长线上,BD=BC,则∠D= ▲ . 【答案】27°。 【考点】圆周角定理,三角形的外角定理,等腰三角形的性质。 【分析】∵∠AOC=108°,∴∠ABC=54°。∵BD=BC,∴∠D=∠BCD= ∠ABC=27°。 3.(内蒙古巴彦淖尔、赤峰3分)如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为 ▲ . 【答案】4。 【考点】切线的性质,勾股定理。 【分析】连接OC,则由直线PC是圆的切线,得OC⊥PC。设圆的半径为x,则在Rt△OPC中,PC=3,OC= x,OP=1+x,根据地勾股定理,得OP2=OC2+PC2,即(1+x)2= x 2+32,解得x=4。即该半圆的半径为4。 【学过切割线定理的可由PC2=PA•PB求得PA=9,再由AB=PA-PB求出直径,从而求得半径】
标签:初三数学试卷,初三数学试卷分析,初三数学学习方法总结,初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
关键词:
|
最新《初三数学试卷》
|