高考数学备考:圆的标准方程学习[10-18 00:00:14] 来源:http://www.guaimaomi.com 高考数学复习资料 阅读:9111次
概要:点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰I.直接应用(内化新知)问题三:1.写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在 ,半径为 ;(3)经过点 ,圆心在点 .2.根据圆的方程写出圆心和半径(1) ; (2) .II.灵活应用(提升能力)问题四:1.求以 为圆心,并且和直线 相切的圆的方程.[教师引导]由问题三知:圆心与半径可以确定圆.2.已知圆的方程为 ,求过圆上一点 的切线方程.[学生活动]探究方法[教师预设]方法一:待定系数法(利用几何关系求斜率-垂直)方法二:待定系数法(利用代数关系求斜率-联立方程)方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]方法四:轨迹法(利用向量垂直列关系式)3.你能归纳出具有一般性的结论吗?已知圆的方程是 ,经过圆上一点 的切线的方程是: .III.实际应用(回归自然)问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).[多媒体课件演示创设实际问题情境](四)反馈训练(形成方法)问题六:1.求以C(-1,-5)为圆心,并且和y轴相切的圆的方程.2.已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程.3.求圆x2 y2=13过点(-2,3)的切线方程.4.已知圆的方程为 ,求过点 的切线方程.(五)小结反思(拓展引申)1.课堂小结:(1) 高考数学备考:圆的标准方程学习,http://www.guaimaomi.com【摘要】最新一年高考进入第一轮复习阶段了,数学要怎样备考呢?www.guaimaomi.com小编为大家准备了圆的标准方程学习,希望能给大家带来帮助。 1.教学目标 (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程; 2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程. (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力; 2.使学生加深对数形结合思想和待定系数法的理解; 3.增强学生用数学的意识. (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣. 2.教学重点.难点 (1)教学重点:圆的标准方程的求法及其应用. (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰 I.直接应用(内化新知) 问题三:1.写出下列各圆的方程(课本P77练习1) (1)圆心在原点,半径为3; (2)圆心在 ,半径为 ; (3)经过点 ,圆心在点 . 2.根据圆的方程写出圆心和半径 (1) ; (2) . II.灵活应用(提升能力) 问题四:1.求以 为圆心,并且和直线 相切的圆的方程. [教师引导]由问题三知:圆心与半径可以确定圆. 2.已知圆的方程为 ,求过圆上一点 的切线方程. [学生活动]探究方法 [教师预设] 方法一:待定系数法(利用几何关系求斜率-垂直) 方法二:待定系数法(利用代数关系求斜率-联立方程) 方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示] 方法四:轨迹法(利用向量垂直列关系式) 3.你能归纳出具有一般性的结论吗? 已知圆的方程是 ,经过圆上一点 的切线的方程是: . III.实际应用(回归自然) 问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m). [多媒体课件演示创设实际问题情境] (四)反馈训练(形成方法) 问题六:1.求以C(-1,-5)为圆心,并且和y轴相切的圆的方程. 2.已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程. 3.求圆x2 y2=13过点(-2,3)的切线方程. 4.已知圆的方程为 ,求过点 的切线方程. (五)小结反思(拓展引申) 1.课堂小结: (1)圆心为C(a,b),半径为r 的圆的标准方程为: 当圆心在原点时,圆的标准方程为: (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法 (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是: (4) 求解应用问题的一般方法 2.分层作业:(A)巩固型作业:课本P81-82:(习题7.6)1.2.4 (B)思维拓展型作业: 试推导过圆 上一点 的切线方程. 3.激发新疑: 问题七:1.把圆的标准方程展开后是什么形式? 2.方程: 的曲线是什么图形? 教学设计说明 圆是学生比较熟悉的曲线,初中平 面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤 的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意 识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解 的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的 形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成. 本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主 导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼 了思维. 当的坐标系解决与圆有关的实际问题. 3.教学过程 (一)创设情境(启迪思维) 问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道? [引导] 画图建系 [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习) 解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0) 将x=2.7代入,得 . 即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。 (二)深入探究(获得新知) 问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程? 答:x2 y2=r2 2.如果圆心在 ,半径为 时又如何呢? [学生活动] 探究圆的方程。 [教师预设] 方法一:坐标法 如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r} 由两点间的距离公式,点M适合的条件可表示为 ① 把①式两边平方,得(x―a)2 (y―b)2=r2 方法二:图形变换法 方法三:向量平移法 (三)应用举例(巩固提高) 【总结】圆的标准方程学习就为大家介绍到这儿了,在高三阶段,大家也应该要多了解一些高考备考知识,为高考而做准备。 浏览了本文的同学也浏览了: 高考数学备考:第一轮复习重要知识点归纳 高考数学备考:第一轮复习总体方案 www.guaimaomi.com
标签:高考数学复习资料,高考数学答题技巧大全,高考数学知识点,高考复习 - 高考数学复习资料
上一篇:高考数学备考:向量与三角形问题
关键词:
|
最新《高考数学复习资料》
热门《高考数学复习资料》
|