高一数学教案:对数函数及其性质教案[10-18 00:11:43] 来源:http://www.guaimaomi.com 高一数学教案 阅读:9922次
概要:数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.旧知提示复习:若 ,则 ,其中 称为 ,其范围为 , 称为 .合作探究(预习教材P70- P72,找出疑惑之处)探究1:元旦晚会前,同学们剪彩带备用。现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。设所得的彩带的根数为 ,剪的次数为 ,试用 表示 .新知:对数函数的概念试一试:以下函数是对数函数的是( )A. B. C. D. E.反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如: , 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 ,且 .探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列对数函数的图象.;新知:对数函数的图象和性质:象定义域值域过定点单调性思考:当 时, 时, ; 时, ;当 时, 时, ; 时, .典型例题例1求下列函数的定义域:(1) ; (2) .例2比较大小:(1) ; (2) ; (3) ;(4) 与 .课堂小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.知识拓展对数函数凹凸性:函数 , 是任意两个正实数.当 时, ;当 时, .学习评价1. 函数 的定义域为( )A. B. C. D.2. 函数 的定义域为( )A. B. C. D.3. 函数 高一数学教案:对数函数及其性质教案,http://www.guaimaomi.com【摘要】欢迎来到www.guaimaomi.com高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高一数学教案:对数函数及其性质教案”希望能为您的提供到帮助。 本文题目:高一数学教案:对数函数及其性质教案 学习目标 1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法. 旧知提示 复习:若 ,则 ,其中 称为 ,其范围为 , 称为 . 合作探究(预习教材P70- P72,找出疑惑之处) 探究1:元旦晚会前,同学们剪彩带备用。现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。设所得的彩带的根数为 ,剪的次数为 ,试用 表示 . 新知:对数函数的概念 试一试:以下函数是对数函数的是( ) A. B. C. D. E. 反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如: , 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 ,且 . 探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数图象,结合图象研究函数性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列对数函数的图象. ; 新知:对数函数的图象和性质: 象 定义域 值域 过定点 单调性 思考:当 时, 时, ; 时, ; 当 时, 时, ; 时, . 典型例题 例1求下列函数的定义域:(1) ; (2) . 例2比较大小: (1) ; (2) ; (3) ;(4) 与 . 课堂小结 1. 对数函数的概念、图象和性质; 2. 求定义域; 3. 利用单调性比大小. 知识拓展 对数函数凹凸性:函数 , 是任意两个正实数. 当 时, ;当 时, . 学习评价 1. 函数 的定义域为( ) A. B. C. D. 2. 函数 的定义域为( ) A. B. C. D. 3. 函数 的定义域是 . 4. 比较大小: (1)log 67 log 7 6 ; (2) ; (3) . 课后作业 1. 不等式的 解集是( ). A. B. C. D. 2. 若 ,则( ) A. B. C. D. 3. 当a>1时,在同一坐标系中,函数 与 的图象是( ). 4. 已知函数 的定义域为 ,函数 的定义域为 ,则有( ) A. B. C. D. 5. 函数 的定义域为 . 6. 若 且 ,函数 的图象恒过定点 ,则 的坐标是 . 7.已知 ,则 = . 8. 求下列函数的定义域: §2.2.2 对数函数及其性质(2) 学习目标 1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质; 3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质. 旧知提示 复习1:对数函数 图象和性质. a>1 0 图性质 (1)定义域: (2)值域: (3)过定点: (4)单调性: 复习2:比较两个对数的大小:(1) ; (2) . 复习3:(1) 的定义域为 ; (2) 的定义域为 . 复习4:右图是函数 , , , 的图象,则底数之间的关系为 . 合作探究 (预习教材P72- P73,找出疑惑之处) 探究:如何由 求出x? www.guaimaomi.com
新知:反函数 试一试:在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? 反思: (1)如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗?为什么? (2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称. 典型例题 例1求下列函数的反函数: (1) ; (2) . 提高:①设函数 过定点 ,则 过定点 . ②函数 的反函数过定点 . ③己知函数 的图象过点(1,3)其反函数的图象过点(2,0),则 的表达式为 . 小结:求反函数的步骤(解x →习惯表示→定义域) 例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系? (2)纯净水 摩尔/升,计算其酸碱度. 例3 求下列函数的值域:(1) ;(2) . 课堂小结 ① 函数模型应用思想;② 反函数概念. 知识拓展 函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等. 学习评价 1. 函数 的反函数是( ). A. B. C. D. 2. 函数 的反函数的单调性是( ). A. 在R上单调递增 B. 在R上单调递减 C. 在 上单调递增 D. 在 上单调递减 3. 函数 的反函数是( ). A. B. C. D. 4. 函数 的值域为( ). A. B. C. D. 5. 指数函数 的反函数的图象过点 ,则a的值为 . 6. 点 在函数 的反函数图象上,则实数a的值为 . 课后作业 1. 函数 的反函数为( ) A. B. C. D. 2. 设 , , , ,则 的大小关系是( ) A. B. C. D. 3. 的反函数为 . 4. 函数 的值域为 . 5. 已知函数 的反函数图象经过点 ,则 . 6. 设 ,则满足 的 值为 . 7. 求下列函数的反函数. (1) y= ; (2)y= (a>0,a≠1,x>0) ; (3) . 【总结】最新一年www.guaimaomi.com为小编在此为您收集了此文章“高一数学教案:对数函数及其性质教案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在www.guaimaomi.com学习愉快!
标签:高一数学教案,高一数学教案模板,高中数学学习方法总结,高中学习网 - 高一学习辅导 - 高一数学辅导资料 - 高一数学教案
上一篇:高一数学教案:实际问题的函数建模
关键词:
|
最新《高一数学教案》
热门《高一数学教案》
|