高三数学教案:双曲线复习教案[10-18 00:11:43] 来源:http://www.guaimaomi.com 高三数学教案 阅读:9790次
概要:焦点的距离是7,则这点到双曲线的右焦点的距离是3.经过两点 的双曲线的标准方程是 。4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为【例题精讲】1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。【矫正巩固】1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。【迁移应用】1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。3. 双曲线 的焦距为4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为【总结】最新一年年www. 高三数学教案:双曲线复习教案,http://www.guaimaomi.com【摘要】欢迎来到www.guaimaomi.com高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。因此小编在此为您编辑了此文:“高三数学教案:双曲线复习教案”希望能为您的提供到帮助。 本文题目:高三数学教案:双曲线复习教案 【考纲要求】 了解双曲线的定义,几何图形和标准方程,知道它的简单性质。 【自学质疑】 1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 , 渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。 2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是 3.经过两点 的双曲线的标准方程是 。 4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。 5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为 【例题精讲】 1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。 2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。 3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。 【矫正巩固】 1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。 2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。 3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是 4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。 【迁移应用】 1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率 2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。 3. 双曲线 的焦距为 4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则 5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 . 6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 【总结】最新一年年www.guaimaomi.com为小编在此为您收集了此文章“高三数学教案:双曲线复习教案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在www.guaimaomi.com学习愉快!
标签:高三数学教案,高三数学教案模板,高三数学复习资料,高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
关键词:
|
最新《高三数学教案》
热门《高三数学教案》
|