2017届高三数学期中试题及答案[05-23 10:35:54] 来源:http://www.guaimaomi.com 高三数学试题 阅读:9849次
概要::甲:函数f(x)的值域为(-1,1);乙:若x1≠x2,则一定有f(x1)≠f(x2);丙:若规定f1(x)=f(x),fn(x)=f(fn-1(x)),则fn(x)=x1+n|x|对任意n∈N*恒成立你认为上述三个命题中正确的个数有()A.3个 B.2个C.1个 D.0个[答案]A[解析]当x>0时,f(x)=x1+x∈(0,1),当x=0时,f(0)=0,当x<0时,f(x)=x1-x∈(-1,0),∴f(x)的值域为(-1,1),且f(x)在(-∞,+∞)上为增函数,因此,x1≠x2时,一定有f(x1)≠f(x2).∵f(x)=x1+|x|,f1(x)=f(x),∴f1(x)=x1+|x|,又fn(x)=f(fn-1(x)),∴f2(x)=f(f1(x))=fx1+|x|=x1+|x|1+|x|1+|x|=x1+2|x|,f3(x)=f(f2(x))=fx1+2|x|=x1+2|x|1+|x|1+2|x|=x1+3|x|……可知对任意n∈N*,fn(x)=x1+n|x|恒成立,故选A. www.guaimaomi.com 10.(2011•陕西宝鸡质检)如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x) 2017届高三数学期中试题及答案,http://www.guaimaomi.comD.sin2α+cos2(α+30°)+sinαcos(α+30°)=34 [答案] A [解析] 观察已知等式不难发现,60°-30°=50°-20°=45°-15°=30°,推广后的命题应具备此关系,但A中α与β无联系,从而推断错误的命题为A.选A. 9.(2011•山东潍坊一中期末)一次研究性课堂上,老师给出函数f(x)=x1+|x|(x∈R),甲、乙、丙三位同学在研究此函数时分别给出命题: 甲:函数f(x)的值域为(-1,1); 乙:若x1≠x2,则一定有f(x1)≠f(x2); 丙:若规定f1(x)=f(x),fn(x)=f(fn-1(x)),则fn(x)=x1+n|x|对任意n∈N*恒成立 你认为上述三个命题中正确的个数有( ) A.3个 B.2个 C.1个 D.0个 [答案] A [解析] 当x>0时,f(x)=x1+x∈(0,1),当x=0时,f(0)=0,当x<0时,f(x)=x1-x∈(-1,0),∴f(x)的值域为(-1,1),且f(x)在(-∞,+∞)上为增函数,因此,x1≠x2时,一定有f(x1)≠f(x2). ∵f(x)=x1+|x|,f1(x)=f(x),∴f1(x)=x1+|x|,又fn(x)=f(fn-1(x)), ∴f2(x)=f(f1(x))=fx1+|x|=x1+|x|1+|x|1+|x|=x1+2|x|, f3(x)=f(f2(x))=fx1+2|x|=x1+2|x|1+|x|1+2|x|=x1+3|x|…… 可知对任意n∈N*,fn(x)=x1+n|x|恒成立,故选A. www.guaimaomi.com
10.(2011•陕西宝鸡质检)如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M(x)恒成立,那么就称函数f(x)为有界泛函数,下面四个函数: ①f(x)=1; ②f(x)=x2; ③f(x)=(sinx+cosx)x; ④f(x)=xx2+x+1. 其中属于有界泛函数的是( ) A.①② B.①③ C.②④ D.③④ [答案] D [解析] 对任意实数x.∵sinx+cosx=2sinx+π4≤2,∴存在常数M≥2,有|sinx+cosx|≤M成立, ∴|x(sinx+cosx)|≤M|x|,即|f(x)|≤M|x|成立,∴③是有界泛函数; 又∵x2+x+1=x+122+34≥34, ∴1x2+x+1≤43,∴存在常数M≥43,使|x||x2+x+1|≤M(x),即|f(x)|≤M|x|成立, 故④是有界泛函数,因此选D. 11.(2011•北京学普教育中心联考版)观察下列算式: 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… 用你所发现的规律得出22011的末位数字是( ) A.2 B.4 C.6 D.8 [答案] D [解析] 观察发现,2n的末位数字以4为周期出现,依次为2,4,8,6,2011被4除的余数为3,故22011的末位数字与23的末位数字相同,故选D. 12.(2011•河北冀州中学期末)如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为1n(n≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第4个数(从左往右数)为( ) 11 12 12 13 16 13 14 112 112 14 15 120 130 120 15 A.11260 B.1840 C.1504 D.1360 [答案] B [解析] 第10行第1个数为110,第2个数为19-110=190,第9行第1个数为19,第2个数为18-19=172,∴第10行第3个数为172-190=1360,第8行第1个数为18,第2个数为17-18=156,故第9行第3个数为156-172=1252,∴第10行第4个数为1252-1360=1840. 第Ⅱ卷(非选择题 共90分) 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011•江西吉安期末)请阅读下列材料:若两个正实数a1,a2满足a21+a22=1,那么a1+a2≤2.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1.因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤2.类比上述结论,若n个正实数满足a21+a22+…+a2n=1,你能得到的结论为________. [答案] a1+a2+…+an≤n(n∈N*) [解析] 构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+1, ∵f(x)≥0对任意实数x都成立, ∴Δ=4(a1+a2+…+an)2-4n≤0, ∵a1,a2,…,an都是正数,∴a1+a2+…+an≤n. (理)(2011•北京学普教育中心)我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值3a2,类比上述结论,在棱长为a的正四面体内任一点到其四个面的距离之和为定值________. [答案] 6a3 [解析] 在正三角形内到三边的距离之和等于正三角形的高;正三角形的边类比空间正四面体的面,正四面体内任一点到其四个面的距离之和等于正四面体的高6a3. 14.(2011•湖北荆门市调研)如果一个复数的实部、虚部对应一个向量的横坐标、纵坐标,已知z1=(1-2i)i对应向量为a,z2=1-3i1-i对应向量为b,那么a与b的数量积等于________. [答案] 3 [解析] z1=2+i对应向量a=(2,1),z2=1-3i1-i=1-3i1+i2=2-i对应向量b=(2,-1), ∴a•b=3. 15.(2011•辽宁沈阳二中检测)直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k∈N*)个格点,则称函数f(x)为k阶格点函数,下列函数:①f(x)=sinx;②f(x)=3π(x-1)2+2;③f(x)=14x;④f(x)=log0.5x,其中是一阶格点函数的有________. [答案] ①② [解析] f(x)=sinx通过的格点只有(0,0);f(x)=3π(x-1)2+2经过的格点只有(1,2);f(x)=log0.5x经过的格点有(2n,-n),n=0,1,2…;f(x)=14x经过的格点至少有(0,1),(-1,4),故填①②. 16.(2011•杭州市质检)设n为正整数,f(n)=1+12+13+…+1n,计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,观察上述结果,可推测一般的结论为________. [答案] f(2n)≥n2+1
标签:高三数学试题,高三数学试题及答案,高三数学复习资料,高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学试题
关键词:
|
最新《高三数学试题》
热门《高三数学试题》
|