空间几何体的结构高一数学教案[10-18 00:11:43] 来源:http://www.guaimaomi.com 高一数学教案 阅读:9530次
概要:何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征:① 提问:举例生活中有哪些实例给我们以两个面平行的形象?② 讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③ 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→ 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④ 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤ 讨论:埃及金字塔具有什么几何特征?⑥ 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?⑦ 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底 空间几何体的结构高一数学教案,http://www.guaimaomi.com【摘要】鉴于大家对www.guaimaomi.com十分关注,小编在此为大家整理了此文“空间几何体的结构高一数学教案”,供大家参考! 本文题目:空间几何体的结构高一数学教案 第一课时 1.1.1柱、锥、台、球的结构特征(一) 教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征. 教学难点:柱、锥的结构特征的概括. 教学过程: 一、新课导入: 1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态? 2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些? 3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算. 二、讲授新课: 1. 教学棱柱、棱锥的结构特征: ① 提问:举例生活中有哪些实例给我们以两个面平行的形象? ② 讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征? ③ 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽). 结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线. ④ 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A’B’C’D’E’ ⑤ 讨论:埃及金字塔具有什么几何特征? ⑥ 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥. 结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示? ⑦ 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质? 棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形 棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方. 2. 教学圆柱、圆锥的结构特征: ① 讨论:圆柱、圆锥如何形成? ② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥. → 列举生活中的棱柱实例 →结合图形认识:底面、轴、侧面、母线、高. → 表示方法 ③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体. ④ 观察书P2若干图形,找出相应几何体; 举例:生活中的柱体、锥体. 3. 小结:几何图形;相关概念;相关性质;生活实例 三、巩固练习:1. 练习:教材P7 1、2题. 2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径. 3.已知圆柱的底面半径为3 【总结】最新一年已经到来,新的一年www.guaimaomi.com会为您整理更多更好的文章,希望本文“空间几何体的结构高一数学教案”能给您带来帮助!下面请看更多频道: 更多频道: 高中频道 高中英语学习
标签:高一数学教案,高一数学教案模板,高中数学学习方法总结,高中学习网 - 高一学习辅导 - 高一数学辅导资料 - 高一数学教案
关键词:
|
最新《高一数学教案》
热门《高一数学教案》
|